Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Lett ; 7(1): 24-36, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37065434

RESUMO

Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.

2.
Mol Ecol ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779590

RESUMO

Toxicity has evolved multiple times across the tree of life and serves important functions related to hunting, defence and parasite deterrence. Toxins are produced either in situ by the toxic organism itself or associated symbionts, or acquired through diet. The ability to exploit toxins from external sources requires adaptations that prevent toxic effects on the consumer (autoresistance). Here, we examine genomic adaptations that could facilitate autoresistance to the diet-acquired potent neurotoxic alkaloid batrachotoxin (BTX) in New Guinean toxic birds. Our work documents two new toxic bird species and shows that toxic birds carry multiple mutations in the SCN4A gene that are under positive selection. This gene encodes the most common vertebrate muscle Nav channel (Nav1.4). Molecular docking results indicate that some of the mutations that are present in the pore-forming segment of the Nav channel, where BTX binds, could reduce its binding affinity. These mutations should therefore prevent the continuous opening of the sodium channels that BTX binding elicits, thereby preventing muscle paralysis and ultimately death. Although these mutations are different from those present in Neotropical Phyllobates poison dart frogs, they occur in the same segments of the Nav1.4 channel. Consequently, in addition to uncovering a greater diversity of toxic bird species than previously known, our work provides an intriguing example of molecular-level convergent adaptations allowing frogs and birds to ingest and use the same neurotoxin. This suggests that genetically modified Nav1.4 channels represent a key adaptation to BTX tolerance and exploitation across vertebrates.

3.
PLoS One ; 17(12): e0278641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584181

RESUMO

Advances in tracking technology have helped elucidate the movements of the planet's largest and most mobile species, but these animals do not represent faunal diversity as a whole. Tracking a more diverse array of animal species will enable testing of broad ecological and evolutionary hypotheses and aid conservation efforts. Small and sedentary species of the tropics make up a huge part of earth's animal diversity and are therefore key to this endeavor. Here, we investigated whether modern satellite tracking is a viable means for measuring the fine-scale movement patterns of such animals. We fitted five-gram solar-powered transmitters to resident songbirds in the rainforests of New Guinea, and analyzed transmission data collected over four years to evaluate movement detection and performance over time. Based upon the distribution of location fixes, and an observed home range shift by one individual, there is excellent potential to detect small movements of a few kilometers. The method also has clear limitations: total transmission periods were often short and punctuated by lapses; precision and accuracy of location fixes was limited and variable between study sites. However, impending reductions in transmitter size and price will alleviate many issues, further expanding options for tracking earth's faunal diversity.


Assuntos
Aves Canoras , Animais , Florestas , Comportamento de Retorno ao Território Vital , Floresta Úmida , Nova Guiné , Ecossistema
4.
Nat Commun ; 13(1): 268, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022441

RESUMO

Tropical mountains harbor exceptional concentrations of Earth's biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species' altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


Assuntos
Biodiversidade , Aves/genética , Genética Populacional , Animais , Clima , Fluxo Gênico , Geografia , Nova Guiné , Filogeografia , Polimorfismo Genético , Densidade Demográfica
5.
Proc Biol Sci ; 288(1949): 20210446, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878920

RESUMO

Animal hosts have evolved intricate associations with microbial symbionts, where both depend on each other for particular functions. In many cases, these associations lead to phylosymbiosis, where phylogenetically related species harbour compositionally more similar microbiomes than distantly related species. However, evidence for phylosymbiosis is either weak or lacking in gut microbiomes of flying vertebrates, particularly in birds. To shed more light on this phenomenon, we compared cloacal microbiomes of 37 tropical passerine bird species from New Guinea using 16S rRNA bacterial gene sequencing. We show a lack of phylosymbiosis and document highly variable microbiomes. Furthermore, we find that gut bacterial community compositions are species-specific and tend to be shaped by host diet but not sampling locality, potentially driven by the similarities in habitats used by individual species. We further show that flight-associated gut modifications, coupled with individual dietary differences, shape gut microbiome structure and variation, contributing to the lack of phylosymbiosis. These patterns indicate that the stability of symbiosis may depend on microbial functional diversity rather than taxonomic composition. Furthermore, the more variable and fluid host-microbe associations suggest probable disparities in the potential for coevolution between bird host species and microbial symbionts.


Assuntos
Microbioma Gastrointestinal , Passeriformes , Animais , Dieta , Nova Guiné , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...